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Outline

• Objective
• Coherent Detection

– Non-Fluctuating Signal + Noise
– Fluctuating Signal + Noise

• Speckle
• Speckle with Multiple Measurement Integration
• Speckle and Turbulence

– Comparison
• Photon Counting (Geiger-mode APD) Detectors

– Non-Fluctuating Signal + Noise
– Fluctuating Signal + Noise

• Speckle
• Speckle and Turbulence

– Comparison
• Discussion



UNCLASSIFIED

UNCLASSIFIED

Objective

• Discuss the Signal + Noise Models appropriate 
for use in performance modeling of coherent 
detection laser receiversand of photon counting 
(Geiger-mode) laser receivers

• Indicate the amount of increased signal required 
to overcome speckle and turbulence induced 
signal fluctuations by comparing the Probability 
of Detection vs. SNR curves

• Discuss using Multiple Independent 
Measurements to Overcome Signal Fluctuations



UNCLASSIFIED

UNCLASSIFIED

Reference

• The analysis uses results from Osche, Gregory R., 
Optical Detection Theory for Laser Applications, 
Hoboken, New Jersey: John Wiley & Sons, 2002.
– Treats Coherent Detection
– Direct Detection

• Linear Response Detectors
• Photon Counting Detectors including Geiger-mode APDs

– Speckle
– Weak Turbulence including the backscatter amplification for 

monostatic receivers
– Multi-pulse Averaging
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Coherent Receiver Probability of Detection
Equations

Coherent Detection with Linear Response Detectors:

Non-fluctuating Signal + AWGN single pulse:
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Speckle Signal + AWGN:
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Speckle + Turbulence Signal + AWGN single pulse, bistatic receiver:
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Speckle + Turbulence Signal + AWGN single pulse, monostatic receiver:

PODSpeckle_Turbulence_AWGN_monostatic i
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Coherent Receiver Probability of Detection
Parameter Values for Sample Calculations
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Coherent Receiver Probability of Detection
Results

Coherent Detection Probability of Detection vs. SNR
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Photon Counting Probability of Detection
Equations

Photon Counting:

Non-fluctuating Signal and Photon Counting:
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Speckle Signal & Photon Counting:
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Signal

Processing Window 

Multiple sequential measurement 
intervals over a time period called a 
Processing Window. The Processing 
Window is divided into T equal 
measurement intervals, in one of 
which may reside the signal
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Photon Counting Probability of Detection
Equations

σl 2 σχ⋅:= σl
2

0.834=Speckle + Turbulence Signal + Photon Counting, bistatic receiver:
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Speckle + Turbulence Signal + Photon Counting, monostatic receiver:

PODSpeckle_Turbulence_PC_ms i
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Photon Counting Probability of Detection
Parameter Values for Sample Calculations
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Photon Counting Probability of Detection
Results
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Discussion
• Coherent Receivers

– Overcoming Speckle and Turbulence can require large increases in
laser power (>3dB) for a single measurement, OR

– Integration over Multiple Measurements
• If the time between measurements is greater than the correlation time of the 

statistical process (e.g., Swerling Case II), the POD for N measurements can 
be greater than for a single measurement with N times the energy of each of 
the multiple measurements

• Osche shows that for the Swerling Case II with Pfa = 1E-08 and POD = 0.9 
(Figure 6-24), integration over multiple measurements can require ~ 5 dB 
less energy per measurement than the single measurement energy divided 
by N, for N ~ 5 - 10 measurements, i.e., there is a ~ 5 dB improvement 
compared to coherent integration

– In Turbulence, the backscatter amplification effect degrades the POD 
for the monostatic receiver compared to the bistatic receiver

• Photon Counting Receivers
– Overcoming Speckle and Turbulence can require large increases in

laser power (>3dB), OR
– Multiple Measurements can be used to overcome the loss, but since the 

averaging is post-detection and the signal is binary, m out of n 
processing (aka, coincidence detection or double-thresholding) is used


