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Abstract 

Sonic crystals are artificial structures consisting of a periodic array of acoustic scatterers 

embedded in a homogeneous matrix material, with a usually large impedance mismatch between the 

two materials. They exhibit strong sound attenuation at selective frequency bands due to the 

interference of multiply reflected waves. However, sound attenuation bands in the audible range are 

only achieved by unfunctionally large sonic crystals. If local resonators are used instead of simple 

scatterers, the frequencies of the attenuation bands can be reduced by about two orders of 

magnitude. 

In the present paper we perform numerical simulations of acoustic wave propagation 

through sonic crystals consisting of local resonators using the Local Interaction Simulation 

Approach (LISA). Three strong attenuation bands are found at frequencies between 0.3 and 6.0 

kHz, which do not depend on the periodicity of the crystal. The results are in good qualitative 

agreement with experimental data. We analyze the dependence of the resonance frequencies on the 

structural parameters of the local resonators in order to create a tool for design and optimization of 

any kind of sonic crystal. 
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1. Introduction 

Usually, the goal in the design of sound insulation material is to achieve strong sound 

attenuation over a large frequency range. However, for application as acoustic filters or noise 

suppression, materials that impede the propagation of acoustic waves only at selected frequency 

bands may be desirable. 

Similar effects are well known for electrons in natural crystals [1] and for electromagnetic 

waves in photonic crystals [2, 3]. Martínez-Sala et al. [4] found that a periodic array of acoustic 

scatterers in a homogeneous matrix material (e. g. solid cylinders in air) exhibits similar effects on 

acoustic waves, due to superposition of multiply reflected waves within the array, according to 

Bragg’s theory. In the following years a large number of experimental [5-8] and theoretical 

investigations [9-10] have been carried out, leading to analogous results for diverse types of 

 2



periodic structures, thus called Sonic Crystals. These studies have shown that the existence of a 

pronounced sound attenuation band is strongly connected with a large acoustic impedance ratio 

between the scatterers’ and the matrix’ material. The band width and depth vary with the density of 

the scatterers inside the sonic crystal. The center frequencies, however, are always given by Bragg’s 

condition 

 
a
vnf

2
⋅=  (n = 1, 2, …), (1) 

where v is the longitudinal sound velocity of the matrix material and a is the lattice constant 

(i. e. the center distance between adjacent acoustic scatterers). These results have been confirmed 

by numerical simulations using the Local Interaction Simulation Approach (LISA) [11, 12], in good 

qualitative agreement with experimental and theoretical data [13]. 

In order to obtain sound attenuation bands in the audible frequency range, the dimensions of 

the sonic crystals become too large to be suitable as sound insulation material. Furthermore, the 

sound attenuation depends on the direction of the wave propagation relative to the symmetry axes 

of the array. These shortcomings have been overcome by Liu et al [14], who built a sonic crystal 

consisting of an array of acoustic scatterers, which exhibit resonance frequencies themselves. These 

local resonators are silicone rubber coated metal spheres. Silicone rubber is a very weak material, 

which allows the metal sphere to vibrate within its coating. Thus, the sound attenuating frequency 

bands are not determined by the scatterers’ distribution, but by their intrinsic structure. 

Experimental measurements of the sound transmission through those locally resonant sonic crystals 

yield strong attenuation bands at frequencies about two orders of magnitude lower than predicted by 

Bragg’s theory (Eq. 1). The results have been verified numerically using two-dimensional LISA 

simulations providing good qualitative agreement with the experiment. The effect is found to be due 

to the individual scatterers [13]. At low frequencies, the depth of the sound attenuation bands (in 

dB) increases proportionally with the number of consecutive scatterers passed by the incoming 

acoustic wave. At higher frequencies, sound attenuation due to Bragg reflections superposes the 
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local resonances. Periodic arrays of local resonators are used in the experiment and in the LISA 

simulations in order to obtain strong and well defined attenuation bands. 

In the present paper we perform numerical LISA simulations to calculate the sound 

attenuation of a sonic crystal consisting of an array of silicone rubber coated hollow steel cylinders 

(see Figure 1) embedded in an epoxy matrix. Hollow cylinders have been selected for obvious 

reasons of economy and weight reduction. The simulation technique and setup of the virtual 

experiment are briefly described in Section 2. Three different modes of local resonances occur in 

the analyzed frequency range from 0.3 to 6.0 kHz. We study the frequency dependence of these 

resonances on the structural parameters of the local resonators and of the sonic crystal. The results 

are presented in Section 3. 

 

2. Simulation Setup 

The LISA approach has been proven to be an efficient tool for the numerical simulation of 

the acoustic wave propagation in heterogeneous material specimens, in particular those with sharp 

boundaries between different materials, like in sonic crystals. Its reliability has been demonstrated 

in a large number of 1-, 2-, and 3-dimensional virtual experiments, yielding excellent agreement 

with analytical and experimental results [11]. In the present study we restrict ourselves to a 2-D 

model, since a 3-D simulation would increase drastically the computer time. However, the effects of 

sonic crystals and locally resonant sonic materials have been well reproduced [13].  

Based on the formalism of Finite Difference Equations (FDE), sufficiently small spatial (ε) 

and temporal (τ) discretization steps must be adopted, e. g. ε ≤ λ/20 and τ ≤ ε/v (v = sound 

propagation velocity), in order to guarantee numerical stability of the algorithm and to reproduce 

reasonably the “cylindrical” shape of the local resonators. On the other hand, ε cannot be too small 

since the computer time increases inversely with the third power of ε. Since we calculate the sound 

transmission in the audible frequency range, λ is very large and the only limiting factor is the 
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dimension of the local resonator. We set the spatial discretization step to ε = 0.3125 mm, which 

corresponds to 1/48 of the total diameter of one local resonator (see Table 1). The temporal 

discretization step is calculated for the material with the highest sound propagation velocity. The 

LISA simulation setup is shown in Figure 2. We use periodic boundary conditions in the Y 

direction in order to reduce the computer time and to be able to inject plane waves. Our sonic 

crystal consists of 8 infinite columns of local resonators. The elastic constants of the used materials 

are summarized in Table 2. 

Plane monochromatic waves propagate in the X direction through the sonic crystal, after 

having been injected by an input transducer on the left side of the crystal. The displacement 

averaged over Y is registered at both sides of the crystal. The sound attenuation coefficient is 

obtained from the ratio of the displacements at the receiver and at the input transducer. In order to 

avoid unphysical reflections from the borders of the specimen, we have implemented second order 

absorbing boundary conditions in the X direction [15]. 

In the case of the usual sonic crystals, whose sound attenuation is based on the superposition 

of multiply reflected waves, it is essential to calculate a large number of periods of the transmitted 

wave, in order to obtain the correct transmission coefficient. For sonic crystals consisting of local 

resonators, we can reduce the total number of time steps in the simulation, since the attenuation is 

mostly due to local effects within the scatterers. However, it takes some time until the oscillations 

become stationary. Therefore we calculate for each frequency about 20 periods of the transmitted 

wave. In spite of the mentioned simplifications, for a large series of frequencies, the simulation 

becomes very expensive. For the calculations presented in this paper we have used a parallel code 

specially adapted for multi-processor systems. 
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3. Results and Discussion 

For a better understanding of the experimentally [14] and numerically [13] observed local 

resonances and in view of a projected design optimization, we vary the most relevant structural 

parameters of the sonic crystal: lattice constant a, inner radius of the steel cylinder ri, and width of 

the silicone rubber coating ∆r. The variations are performed relatively to the reference parameters 

shown in Table 1. For each case we calculate the sound attenuation coefficient for a series of 

frequencies in the range from 0.3 to 6.0 kHz. The elastic constants of the materials are shown in 

Table 2. Silicone rubber has very small elastic constants and consequently very low sound 

propagation velocity. Its weakness is the basic ingredient for the existence of local resonances, since 

it facilitates the vibration of the steel cylinders. 

Variation of the lattice constant 

The simulation of the sound propagation through the sonic crystal with the reference 

parameters listed in Table 1 yields three strong attenuation peaks centered around 0.7 kHz, 1.6 kHz, 

and 4.9 kHz, respectively, the latter being a double peak with a satellite attenuation maximum 

around 5.2 kHz (see Figure 3). The frequencies are not affected by variations of the lattice constant, 

which suggests that they are entirely due to local effects within the individual scatterers. We 

observe a uniform decrease of the sound attenuation with increasing lattice constant, due to the 

decreasing density of the local resonators. The attenuation at the 5.2 kHz peak decreases much more 

compared to the other frequencies. Therefore, we expect that is due not only to local effects, but 

also to interactions between neighboring scatterers. For the reference value of the lattice constant 

(almost close packing) the lowest resonance frequency is about two orders of magnitude lower than 

predicted by Bragg’s law (Eq. 1). 

Variation of the inner radius of the steel cylinder 

Vasseur et al [8] have shown both experimentally and theoretically that the sound 

attenuation of a sonic crystal composed of a periodic array of copper cylinders in air is the same for 
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hollow and filled cylinders. This happens because the considered wavelengths are much larger than 

the structure of individual cylinders. A hollow metal cylinder cannot generate any local resonance 

phenomena either. The elastic constants of steel are very similar to the ones of copper, hence we 

expect the same independence from the inner radius for our steel cylinders, if we ignore the silicone 

rubber coating. Certainly the local resonance due to the rubber coating will still be present, but by 

varying the inner radius of the steel cylinders we effectively vary only their mass. 

Figure 4 shows that the lowest resonance frequency decreases with the inner radius ri of the 

steel cylinder (i. e. with increasing cylinder mass), whereas the other resonance frequencies do not 

change at all. Even the absolute sound attenuation remains almost constant for the whole frequency 

range apart from the lowest attenuation peak. This suggests that at the lowest resonance frequency 

the steel cylinders vibrate as a whole within the silicone rubber coating, whereas they remain at rest 

at the other resonance frequencies, with the vibration limited to the coating. This assumption is 

confirmed by the effect of the variation of the coating’s width. 

Variation of the width of the silicone rubber coating 

In this simulation series not only the width of the coating is changed but also the outer and 

inner radius of the steel cylinders, so that the thickness of the cylinder shells (ro – ri = 1.25 mm) 

remains constant. The two higher resonance frequencies are not affected by the resulting mass 

change of the steel cylinder, so that they allow us to observe the effect of changing the width of the 

silicone rubber coating. Figure 5 shows that those resonance frequencies decrease in a similar way 

with increasing coating width. The lowest resonance frequency, however, changes much less due to 

the competing effects of increasing coating width and decreasing cylinder mass. 

 

4. Conclusions 

Sonic crystals consisting of local resonators yield strong attenuation bands at selected 

frequencies, with a far superior performance with respect to the usual sonic crystals (based on 
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Bragg’s scattering only).  In fact, they succeed in decreasing the peak frequency of up to a factor 

100, with similar relative sound attenuation as for usual sonic crystals. Their properties were first 

discovered experimentally by Liu et al. [14], using silicone rubber coated lead spheres as local 

resonators. 

In order to cut down computer expenses, we have restricted ourselves to 2-D simulations, 

thus implicitly considering coated hollow cylinders, instead of spheres. Yet our results, obtained by 

means of the LISA approach, are in good qualitative agreement with the findings of Liu et al. [14]. 

In fact, by using (virtual) specimens of just about 12 cm of size, we obtain in the audible range three 

well marked attenuation peaks (between 0.3 and 6.0 kHz) with a relative attenuation between 15 

and 25 dB. We have analyzed the dependence of the three peaks on the relevant geometrical 

parameters of the resonators and the crystal. Our results may help to gain a better insight of the 

mechanisms governing local resonances. From an applicative point of view, they can be used to 

predict the structural parameters needed to fabricate custom-tailored sonic crystals. 
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Tables 
 
 
 
 
 

 ε ri ro ∆r a 
[mm] 0.3125 3.75 5.0 2.5 15.9375 

[ε] 1 12 16 8 51 

Table 1. Structural parameters of the sonic crystal in mm and units of ε: ε, ri, ro, ∆r, and a are the 
spatial discretization step, internal and external radii of the cylindrical steel shell, width of the 
silicone rubber coating, and lattice constant, respectively. 

 
 
 
 
 
 
 

Material Epoxy Steel Silicone Rubber Air 
λ [GPa] 4.43 119.4 6·10-4 1.42·10-4

µ [GPa] 1.59 79.6 4·10-5 0 
ρ [kg/m3] 1180 7780 1300 1.23 

vL [m/s] 2540 5985 22.9 340 
vT [m/s] 1161 3199 5.5 0 

Table 2. Lamé constants λ and µ, density ρ, longitudinal vL and transverse vT sound velocities of the 
considered materials. The very low values of λ and µ (and consequently of vL and vT) refer to 
very soft rubber, as used in the experiments of ref. 14 [16]. 
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Figure Captions 

 

Figure 1. Local resonator composed of a hollow steel cylinder (outer radius ro, inner radius 

ri) coated by a layer of silicone rubber (width ∆r). 

 

Figure 2. LISA simulation setup for a sonic crystal consisting of 8 x ∞ local resonators. 

 

Figure 3. Sound transmission through a sonic crystal consisting of 8 x ∞ local resonators for 

various values of the lattice constant. Full circles here and in the following figures correspond to the 

reference case. 

 

Figure 4. Sound transmission through a sonic crystal consisting of 8 x ∞ local resonators for 

various values of the inner steel cylinder radius. 

 

Figure 5. Sound transmission through a sonic crystal consisting of 8 x ∞ local resonators for 

various values of the width of the silicone rubber coating. 
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Figure 4 
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Figure 5 

 

0 1 2 3 4 5 6

-25

-20

-15

-10

-5

0

 ∆r = 2.500 mm
 ∆r = 3.125 mm      ∆r = 3.750 mm

 

 

S
ou

nd
 a

tte
nu

at
io

n 
[d

B
]

Frequency [kHz]

0,00 0,01 0,02 0,03 0,04

 Normalized frequency a/λ

 

 

 

 

 

 16


