Heat Transfer Capabilitiesfor Open Cell Metal Foams &
Micro-Honeycombs Compar able, Offer Orders of Magnitude
| mprovement in Heat Dissipation
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*High surface area/ volume
* h comparable to foams
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-Turbulent flow
*Smaller surface area/ volume
* h comparable to micro-honeycomb
htypically ~10 W/m K

for air cooling and ~10° W/m K
for water cooling in duct
consisting of parallel plates!
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Ultralight Porous M etals
10X Reduction in Heat Sink Size
High Power Electronic Cooling

®* Basic Trends Between Cell
Morphology and Heat
Dissipation Established
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* High K, Large Surface Area,
Turbulence=> Larger H
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® High Thermal Mass Fluid,
Designed Foams=> Larger Q

* Compact High Flux Cooling:
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Flexible, Low Cost Fabrication M ethod Suitable for Open-
Celled Structures Based Upon Textile Technology, Transient
Liquid Phase Sintering
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~Future Opportunities for High
Efficiency Porous Metal Heat Exchangers

Jamming Pod Cooling

| ICAPIII Avionics Upgrade |

»30% Lighter

240% Smaller

»10% Less expensive
sintegrated Design

Commercial

Global Hawk
~ |High Altitude Cruise
Avonics Heatin

F-18/JSF/Commercial AC
Improved Cooling Systems

Greater Capacity/Lower Weight and Size




AN EMERGING MATERIALS BREAKTHROUGH:
SUPERTHERMAL CONDUCTORS AND HEAT EXCHANGERS

A Microheat Pipe

EB - DVD
Inconel® 625 Foam

Wetting liquid
(2.3, H,O, TH,OH,
[CHAGO, GH, ste.

Hollow figaments
Solid
¢ Liguid drawn
tocusps by
capillary action

S0pm

Heat transported by Evaporated & Conducted
Heat Flux (out of plane). 10x improvement.

Three - dimensional “SUPER” Thermal Heat Exchanger

Cooling fluid
crossflow

"Wicking®
Reticulated Foam liquid
with Hollow Ligaments

A e TEEETT T - High thermal
conducting matarial
Heatl pips (2.g. Al, Cu, 5i, 5iC, atc.)

UVA, H.N.G. Wadley



Transport Propertiesin Nanothick Films
Enabling Technology for Next Generation
Electronics, Power Devices, Microvehicles
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«Capillary flow/ effective K / permeability relations

*Fluid flow/ evaporation mechanismsin nanothickness
liquid film regions

*Optimization of size, shape and number of “interline”
regionsfor significantly enhanced heat transfer

*Cost-effective fabrication technology
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Coextrusion Technique for Fabrication

of Microsized M ultifunctional Devices
J. Halloran, U Mich

Body
i Coextrusion
Falyethylene
Binder
MFCX |5 a thermoplastic based powder
forming process that utilizes repetitive

coextrusion to create macroscopic parts
with intricate micro-sized features.

. d’"
Extrusion
¥

Blhder Burnout &
Fugitive Removal

Sintering

Micro-Channel Structures

Copper Heal
Exchanger

Cofired Structures
PMN-PT [ AgPd Composite




3-D Printing, (MIT)
(tool for building with complexity)

Spread p owder Applybinders Love printbed Finikshed part

3-D Printed lattice structure

Rat femur bone Donut printed with surface texture
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